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SUMMARY
Mutations in transporters can impact an individual’s response to drugs and causemany diseases. Few variants
in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and
multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synon-
ymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel
expression and substrate uptake, we find that most variants exert their primary effect on protein abundance,
a phenotype not commonlymeasured alongside function. Using ourmutagenesis results combinedwith struc-
turepredictionandmoleculardynamicsimulations,wedevelopaccurate structure-functionmodelsof theentire
transport cycle, providing biophysical characterization of all known andpossible humanOCT1polymorphisms.
Thisworkprovidesacomplete functionalmapofOCT1variantsalongwitha framework for integrating functional
genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.
15–17
INTRODUCTION

Membrane proteins connect cells to their external environments

and play major roles in human health and disease. Transporter

defects cause diseases, and transporter-mediated uptake is

the primary way therapeutics reach their targets.1–3 The human

genome encodes over 450 solute carrier (SLC) transporters,

with over 120 directly linked to diseases and over 40 playing

important roles in drug disposition.4–7 The organic cation trans-

porter subgroup of the SLC22 family (OCTs) are polyspecific

transporters expressed in the liver, kidney, and intestine. With

their tissue-specific expression and broad substrate selectivity,

OCTs play major roles in the uptake of endogenous molecules

and xenobiotics.8–10 OCT1 transports a range of cations (e.g.,

1-methyl-4-phenylpyridinium [MPP+] and tetraethylammonium

[TEA]), endogenousmolecules (e.g., thiamine11 and serotonin12),

and drugs (e.g., metformin13 and morphine14).

Impaired OCT1 function causes various clinical phenotypes,

including increases in plasma drug concentration, shifts in ther-
1932 Molecular Cell 84, 1932–1947, May 16, 2024 ª 2024 Elsevier Inc
apeutic windows, and alterations in endogenous metabolite

and lipid levels.18–21 While ample evidence of OCT1 polymor-

phisms modulating drug responses exists, only 39 out of over

800 common and rare human genetic variants have been exper-

imentally characterized.22 There are well over 10,000 possible

single-codon OCT1 variants that could contribute to variation

in therapeutic and adverse drug response. Similar issues plague

our understanding of other transporters with genetic variation

and poorly understood functional consequences. To understand

the diverse human responses to therapeutics, we need compre-

hensive models of how genetic variation impacts drug trans-

porters. Crucially, such models must be mechanistic to distin-

guish between variants with broad effects across substrates,

such as disrupting folding, and those with substrate-specific ef-

fects. These integrative models must incorporate the biophysics

of folding, the structural biology of uptake, and the genomics of

human physiology. Conventional variant interpretation methods

are laborious, challenging, and provide no structural insight,

making progress slow.
. All rights reserved.
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Figure 1. Workflow for multiparametric deep mutational scan of OCT1

(A) Negative selection screen schematic for OCT1 function using the cytotoxic OCT1 substrate SM73.

(B) Cell viability determined for variants with SM73.

(C) Schematic of VAMP-seq assay using split mNeonGreen fluorescent protein: protein of interest is tagged with 15-aa mNG-11 fragment and complementing

mNG1-10 is transiently transfected cytosolically.34

(D) Flow cytometric detection of variant effects on mNeonGreen fluorescence (x axis).

(E) We generated and integrated an OCT1 deep mutational scanning library into stable landing pad HEK293T cell lines and determined the impact of variants on

expression and survivability.36,37

(F) Scatterplot of survivability (y axis) and expression (x axis) effects for 11,213 OCT1 variants. Above and to the right are density plots for synonymous (gray),

missense (yellow), and single-codon deletion (purple) classes of mutations. Cutoffs for loss and gain of function for are indicated by a dotted line based on 2

standard deviations from a normal distribution fit to synonymous variants (dashed red lines).
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Deep mutational scanning (DMS) is coming to prominence as

a method for comprehensively assaying genetic variation.23

However, the majority of scans measure a single phenotype,

such as a growth-derived ‘‘fitness’’ value. Recent machine-

learning-based variant effect predictors also provide a single

‘‘pathogenicity’’ score for missense mutations across the prote-

ome.24–26 These single values cannot capture phenomena such

as heterozygosity,27 dominant-negative mutations,28 or pleiot-

ropy.29 A mechanistic understanding of variant effects would

allow us not only to predict whether a mutation alters drug

response or causes disease but also to go further to develop

actionable individual guidelines for dosage and therapeutic

development.

Here, we take the first step toward this goal by integrating

mutational scanning, structure prediction, and population

genetics databases to learn how all >11,213 variants alter

OCT1 biogenesis, function, and human physiology. This

work generates an immediately useful comprehensive

mutational dataset for an important drug transporter while

providing insights into how mutations in this transporter

and other closely related transporters alter drug efficacy.

This integrative approach could bridge molecular biophysics

to clinical genetics, enabling a new generation of precision

medicine.

RESULTS

OCT1 variant expression primarily determines
functional effects
To understand how OCT1 polymorphisms alter function, we

employed DMS of 11,213 variants across the 554 residues of
OCT1. In DMS, the individual effects of an entire library of

variants are measured in pooled genetic screens.23 Here, we

measured multiple phenotypes to reduce variant effects to

the more fundamental metrics of expression and specific activ-

ity.30–33 Our first screen uses a cisplatin analog transported by

OCT1, SM73, with variant-specific cytotoxicity (Figures 1A and

1B). In this negative selection setup, variants with decreased

effective transport will increase in frequency in a pooled screen

compared with variants with wild-type (WT)-like or increased

activity. In our second screen, we use a variation on VAMP-

seq to measure how mutations affect OCT1 expression.34

Here, we tag OCT1 with a fragment of a split-fluorescent pro-

tein (mNeonGreen) and co-express the larger remaining frag-

ment of a fluorescent protein such that only cells with OCT1

expression will have complementation and yield fluorescence

(Figure 1C).34,35 Mutations affecting expression cause corre-

sponding decreases in fluorescence, which are distinguishable

by flow cytometry (Figure 1D).

We used our deep insertion, deletion, and missense mutation

libraries for exploring protein variation in evolution, disease,

and biology (DIMPLE) approach to generate libraries of OCT1

with all single-codon missense substitutions and deletions.36

We found that the pre-screen library had 97% of possible var-

iants evenly distributed across 99.5% of possible sites (Fig-

ure S1A). We integrated this library into stable landing pad

HEK293T cell lines and applied the above cytotoxicity survival

and VAMP-seq (variant abundance by massively parallel

sequencing) expression screens (Figures 1E and S2).37 In the

cytotoxicity assay, we measured how variant frequency

changes over time, relative to WT, by sequencing. For the

expression screen, we sorted library-integrated cells into four
Molecular Cell 84, 1932–1947, May 16, 2024 1933



Figure 2. Heatmap of OCT1 survivability deep mutational scan

SM73 survivability screen fitness overview: residue position (x axis) vs. variant identity (y axis) grouped by physical chemistry. Synonymous variants are boxed in

green and missing data are in light yellow. Above, wild-type sequence, domain organization, and cartoon secondary structure representation of OCT1.
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fluorescence bins and determined the distribution of variants

across them by deep sequencing. This gave two scores for

each position: a survivability score and an expression score

(Figures 1F, 2, and S3A). We found the expression and surviv-

ability screens reproducible across triplicates (Pearson correla-

tion coefficients 0.781–0.878, survivability in Figure S1B; 0.852–

0.871, expression in Figure S1C) with low error (Figures S3B

and S3C).

To understand how variation drives phenotypic change, we

compared scores between assays. We found that survivability

correlates strongly with expression (�0.76 Spearman coeffi-

cient, Figure S1D). The simplest explanation is most mutations

alter function primarily via expression levels, which has been
1934 Molecular Cell 84, 1932–1947, May 16, 2024
seen in other membrane proteins.33,38–42 To rule out a spurious

correlation caused by baseline library bias, we examined

whether unselected variant frequency was a good predictor of

expression or survivability but found weak correlation (0.029

and �0.085 Spearman coefficients, respectively; Figures S1E

and S1F). To test which of the screens best corresponds to

evolutionary pressure, we compared conservation scores from

ConSurf with mean positional scores.43 Conservation is slightly

more correlated to mean positional survivability than expression

(0.53 vs. �0.4 Spearman rho, Figures S1G and S1H). This

increased correlation suggests survivability (i.e., effective activ-

ity) is closer to the relevant phenotype under selection than

expression.
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Figure 3. OCT1 abundance determinants revealed by mutational scan

(A) Abundance importance (y axis) vs. position (x axis) of OCT1. Dotted line indicates cutoff of 20.

(B) Comparison of chemical similarity of variant type (using BLOSUM90) with expression impact (y axis). Variants are grouped by positional abundance

importance score, with high in red and low in black. LOESS (locally estimated scatterplot smoothing) smoothed curve plotted for each group.

(C–E) Physical-chemical effects at positions with high abundance importance score. Distributions of expression fitness scores of variants changing (C) cysteine,

(D) aromatic, or (E) negatively charged residues to other chemistries, between variants at positions with high (red) vs. low (gray) abundance importance scores. S,

synonymous; NS, non-synonymous. Box plots show mean (inner line), first and third quartiles (hinges), and 1.5 times interquartile range from hinges (whiskers),

with points beyond as dots.

(legend continued on next page)
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Transmembrane helices 1–6 and the extracellular
domain drive abundance changes
Our observation that expression is the primary mediator of OCT1

variant function raises the question of how mutations alter

expression. To identify positions with the largest impact on

expression, we calculated a positional ‘‘abundance score,’’

defined as the summed absolute value of expression scores at

each position (see STAR Methods). Plotting this reveals that

high abundance score is concentrated in the first 300 residues

of OCT1, and thus the critical abundance determinants as well

(Figures 3A and S3A).

Specific residue interactions required for membrane insertion,

folding, and stability are often major biogenesis determinants.

Such position should show increased sensitivity of abundance

to side-chain chemistry. To test this, we used the BLOSUM90

matrix to calculate side-chain chemical similarity between WT

and variants (Figure 3B). Here, mutations are assigned a score

based on the similarity between the WT and mutant identities.44

Mutations with similar physicochemistries to WT show little

impact on expression across all residues. In contrast, as mutant

physicochemistry becomes more dissimilar, positions of high

abundance scores diverge from low abundance score, suggest-

ing the abundance score can distinguish positions requiring

chemically specific interactions.

Next, we investigated mutational tolerance at residues associ-

ated with stability and folding, including cysteines, aromatic, and

negatively charged residues (Figures 3C–3E). We again find mu-

tations that change physical chemistry at positions with high

abundance score are extremely deleterious, with aromatic resi-

dues particularly sensitive. By comparison, hydrophobic or

aliphatic residues are less sensitive to physiochemical changes,

while cationic residues are sensitive to charge swaps but less so

for aliphatic substitutions (Figures S4A–S4C). We conclude that

amino acids enabling disulfide formation, electrostatic interac-

tions, and aromatic packing appear to be particularly sensitive

in abundance-important positions, as compared with other

types of residues, which supports our hypothesis that the

residues involved in biogenesis will display high abundance

scores.

We were curious why residues involved in biogenesis are

enriched in OCT1’s first half. As with other major facilitator

superfamily (MFS) transporters, OCT1 is made up of two

6-transmembrane (TM) domain bundles, termed the NTD and

CTD bundles, but distinct to OCT1 and other SLC22s is an extra-

cellular domain (ECD) between TM helices 1 and 2. We mapped

our abundance scores onto the AlphaFold2 model, which

matches experimental structures (Table S1). This revealed that

abundance importance is primarily located in the N-terminal
(F) Abundance importance scores mapped white-to-red onto AlphaFold2 OCT1

(G) Interactions between ECD, N-terminal TM, and stability a helix.

(H) A hydrophobic core in the extracellular domain.

(I) The stability a helix caps the N-terminal TM and interacts with TM4 and TM6.

(J) Left: sequence alignment of Human SLC22 stability helix colored by amino acid

stability helix colored red to blue.

(K) Cytosolic N-terminal TM showing cluster of charged residues with high abun

(L) Western blots using anti-OCT1 antibody on OCT1 variants identified in the s

Figures S5A–S5D.

(M) Confocal microscopy of OCT1 variants. Blue: Hoechst (nuclear); red: cell sur
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TMs, the ECD, and a small cluster of interacting residues at the

bottom of the second 6-TM bundle (TM7 to TM12) (Figures 3A,

3F, and S4D).

The ECD is composed of a mixture of a helices and b sheets

with large loops (Figure 3G). The distal pair of helices interact

with a loop, forming a hydrophobic core rich in abundance-crit-

ical residues, including aromatics (W64, Y91), hydrophobics

(V93, L106), and a disulfide bond (C62–C102) (Figure 3H). All mu-

tations within this motif are sensitive to changes of physico-

chemistry. Previous studies identified glycosylation sites within

ECD residues (N71, N96, S98, and N112)45,46 that whenmutated

cause mild loss of expression.

An adjacent network of residues connects the distal structured

region to the TM domain of OCT1, comprising a pair of double-

stranded antiparallel b sheets among a pair of disulfide bonds

(C50–C121 and C88–C142) abutting a pair of a helices alternat-

ingly interacting with TM1-TM6 or TM7-TM12 (Figure 3I). These

positions are sensitive to mutation, and the disulfide bonds

appear essential (Figure 3J, right). We term this the a helix and

following residues (133-SIVTEFNLVC) the ‘‘stability helix’’

because this region makes key interactions between TMs 1, 3,

and 6 and the ECD, is enriched in stability-determining positions,

and is extremely sensitive to physicochemistry changes. A gluta-

mate (E137) in this helix forms an ionic interaction with R262

within TM 6, an aromatic residue juts into a hydrophobic core

with other aromatics, and C142 forms a disulfide bond within

the ECD. A sequence alignment of the stability helix (133-SIV-

TEFNLVC) across human SLC22s revealed high conservation

(Figure 3J, left). This combination of conservation and sensitivity

tomutation implies that the stability helix plays a key role inmedi-

ating biogenesis across the ECD and TMdomains in the SLC22s.

Residues between interfaces in TMs 1–6 tend to be enriched in

mutationally sensitive hydrophobic amino acids, suggesting a

hydrophobic network connecting the ECD to the intracellular

face of the N-terminal TM. On the intracellular bundle face,

TMs 2–4, residues in the large intracellular TMs 6–7 loop, and

numerous charged residues seem important in determining

expression, including D171, R175, K176, E226, and E284 (Fig-

ure 3K). In agreement with these residues being key in biogen-

esis, they are extremely sensitive to mutations, with charge

swaps being particularly deleterious. Surprisingly, these charged

mutationally intolerant residues are not interacting in this model,

perhaps suggesting alternative conformations.

To validate our screens, we chose a subset of 13 variants

across a range of effects, including cases where the mechanism

seemed to be mediated by abundance or uptake. We measured

total protein abundance by western blotting (Figures 3L and

S5A–S5D) and found that all low-expression mutants from our
model (AF-O15245-F1), with surfaces shown for positions with scores >20.

class. Above: sequence logo. Right: heatmap of expression fitness scores for

dance scores.

creens with a range of phenotypes transfected in HEK293T cells. Full gels in

face wheat germ agglutinin (WGA); green: OCT1-GFP.



ll
Article
screen (W64R, V135I, R175H, and E284A) had reduced apparent

protein abundance, implying that the defects were mediated by

protein biogenesis or upstream (e.g., including transcript abun-

dance and stability). In contrast, mutants demonstrating sub-

strate but not expression deficits (D149N, D149R, E386K, and

R486W) showed WT -like abundance, pointing toward specific

functional effects.

A limitation of VAMP-seq for membrane proteins is that it mea-

sures overall OCT1 expression but not specifically trafficking.

Despite this, we expect variants with high expression in our

screen to have high surface localization, barring changes to spe-

cific trafficking or targeting motifs. To test this hypothesis, we

compared the localization of individual variants with confocal mi-

croscopy (Figures 3M and S5E–S5M). WT OCT1 was observed

at the plasma membrane, and two loss-of-function variants

(D149N and E386K) with WT-like abundance in the screen

show similar surface localization, implying that these variants

specifically alter transporter function. In contrast, three variants

(W64R in the ECD hydrophobic core, V135I in the stabilizing a

helix, and E284A in the intracellular stabilizing region) with loss

of function in both screens had low surface localization. Although

not exhaustive, this suggests that mutational impacts from our

high-throughput screens likely represent their impacts including

trafficking and that loss-of-function phenotypes in transporter

function are primarily via biogenesis disruption.

OCT1-ligand-dependent conformational ensembles
through coevolution, MD, and machine learning
While most loss-of-function variants act by altering expression, a

portion (3.6%) have WT-like expression yet substantial effects

on uptake (Figure 1F). To understand specific mechanisms for

transport changes, we developed a structure-function model.

In SLC transporters, uptake requires the protein to cycle from

outward-facing states, which can bind substrate, to inward-fac-

ing states, where a substrate disassociates. Despite a recent

deluge of SLC22 superfamily structures, there are still gaps in

the transport cycle that must be filled for a complete structure-

function model.46–48 We therefore sought to describe the entire

substrate coupling mechanism of OCT1 by reconstructing the

entire transport cycle through a hybrid approach combining

coevolutionary information, molecular dynamics (MD) simula-

tions, and deep learning (see Figure S6 and STAR Methods).

This approach has been extensively validated in well-studied

systems such as sugar transporters and class A GPCRs.49,50

Starting from a putatively inward-facing AlphaFold2 model, we

find five stable states, spanning outward- to inward-open states

(Figure 4A). We repeated this process with the substrate MPP+

because it is a canonical cationic OCT1 substrate and chemically

like the substrate we used in our cytotoxicity screen, SM73. The

MPP+ simulations yielded four models spanning outward- to in-

ward-open states (Figure 4B).

To understand how substrate binding couples to OCT1

conformational changes, we analyzed the energetic response

to MPP+. Our results suggest that the resting conformation is

the outward-facing one. Upon substrate binding, the thermody-

namic equilibrium shifts toward inward-facing states (Figure 4C),

where the substrate can be released, which then shifts the equi-

librium back to the outward-facing face to repeat the cycle.
Viewed in collective variable (CV) space, the substrate stabilizes

the transition state, effectively ‘‘oiling’’ the transporter rocking

alternating access motion (Figures 4A and 4B).51

We next sought to validate the predicted conformational

states. Because there were no experimental SLC22 structures

available when we started the MD simulations or when

AlphaFold2 was trained, our fully computationally predicted

models are independent of the recently published experimental

structures. Out of the 12 experimental OCT1/2/3 structures,

there are six outward-open, five inward-open, and one interme-

diate outward-occluded state.46–48 To compare our models with

solved structures, we calculated the root-mean-square devia-

tion (RMSD) between each experimental structure and each pre-

dicted structure (Figure 4D), finding themquite similar (Figure 4E).

Across homologs, outward (or inward) structures were closest to

outward (inward) models, and OCT1 structures closer than ho-

mologs. The outward-occluded state, 8ET9, is of OCT2 bound

toMPP+, which is the same substrate used in our simulations, al-

lowing us to directly compare how our computational method

predicts the placement of MPP+ and interaction with OCT1.

TheMPP+ placement and orientation of side chains from the pre-

dicted and experimental models are strikingly similar (Figures 4F

and 4G). Our predictions reveal additional states, namely Aapo,

a more extreme outward-open state, as well as intermediate

states along the minimum free energy pathway that represents

(Bmpp, Capo) and inward (Cmpp, Dapo) occluded states. Our

approach thus accurately predicted OCT1 conformational states

absent experimental data, identified the binding site and orienta-

tion of MPP+, and described the complete conformational

ensemble of OCT1.

Building a comprehensive structure-function model by
integrating functional effects with thermodynamic
ensembles
With confidence in the accuracy of the computational states, we

built a structure-function model by integrating the DMS results.

To directly compare how each residue contributes to the confor-

mational cycle, we quantified interaction networks between con-

tacting residues across all states. This yielded a score for each

residue’s importance to the conformational ensemble (Figure 5A,

black). To identify which residues are crucial for substrate uptake

from the unbiasedmutational scan, we calculated a residue-wise

functional importance score by taking the summed absolute

value of survivability scores at each position across all mutations

at least neutral within the expression screen (Figure 5A, blue). A

comparison between the residue-wise conformational and func-

tional scores has a qualitative similarity (Figure 5A), which a

confusion matrix finds statistically significant (chi-square with

Yates correction p value <0.1E�5, Figure 5B) implying that the

residues that drive the conformational cycle are critical for

function.

Using this integrated data, we first attempted to address the

functional role of the ECD, a long-standing question in the field.

From functional and conformational importance scores, we see

the ECD (residues 45–145, Figures 5A, 5C, and 5D) is not en-

riched in interactions that drive the conformational cycle or are

essential for substrate uptake. This gives unambiguous evidence

that the ECD does not directly contribute to the conformational
Molecular Cell 84, 1932–1947, May 16, 2024 1937
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Figure 4. Accurate prediction of the thermodynamic OCT1 conformational ensemble with and without substrate
(A and B) 2D conformational landscapes of (A) apo and (B) MPP+-bound OCT1 determined using enhanced-sampling MD simulations. Collective variables (x and

y axes) derived from coevolutionary-based neural networks. Letters are local minima in the landscape. Colors represent free energy (kJ/mol), increasing fromblue

to red.

(C) 1D projection of the free energy landscapes from (A) and (B) with x axis representing the outward-open to inward-open path for Apo (blue) and MPP (red)

simulations. y axis: free energy (kJ/mol).

(D) Sliced volume-filling models generated from meta-stable low energy states in Figures 5A and 5B with Apo (blue) and MPP+ (red).

(E) Comparison between experimental OCT structures (x axis) and predicted structures (y axis) from this work, colored by RMSD between complete structures. x

axis labels note PDB accession, transporter consensus, and state of the structure.

(F and G) Comparison transporter backbone, substrate-binding residues, and substrate poses between experimental OCT2-MPP+ (8ET9, yellow-transporter,

magenta-substrate) outward-occluded state and predicted B-MPP+ occluded state (blue-transporter, green-substrate).
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Figure 5. The integrated structure-function data reveal function residues that drive conformational cycle

(A) Relative (y axis) DMS-based functional (blue) and MD-based conformational (black) importance scores plotted across the OCT1 sequence (x axis). Regions

with high functional and conformational scores are labeled, with substrate binding indicated by arrows.

(B) A confusion matrix between DMS and MD scores, calculated by setting a threshold at 0.2 for the functional and conformational importance scores and a chi-

square test with Yates correction (p value < 0.1E�5, chi-square statistic 384).

(C and D) Functional importance scoresmapped onto the outward-open (Ampp, C) and inward-open (Dmpp, D) states colored from low (white) to high (blue) scores,

with MPP green. Below each model inset of substrate-binding region with side-chain-MPP+ interactions within 4 Å shown as lines.

(E and F) Violin plots comparing the score distributions of binding (<4 Å of ligand in any state) and other residues. Abundance importance scores (E, gray and red)

and functional importance scores (F, blue and gray) on the y axes. Interacting residues appear to be enriched among functionally important (F) but not

(E) abundance-important positions. Box plots are overlayed, indicating means (inner line), first and third quartiles (hinges), and 1.5 times the interquartile range

from hinges (whiskers), and points beyond as dots.

(legend continued on next page)
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cycle. Previous studies found that exchanging ECDs between

homologs alter substrate specificity,52 though, hinting at an indi-

rect role in substrate uptake.

We next set out to determine which regions were most impor-

tant for substrate uptake. We identified six TMs with high confor-

mational and functional importance scores (TM2, TM5, TM7,

TM8, TM10, and TM11, Figure 5A). Of these, TM5, TM7, TM8,

and TM10 harbor residues that interact specifically with the sub-

strate within one of the states (Figures 5C and 5D). We find two

distinct state-specific binding modes, with the pose of the out-

ward-open state not previously described (Figure 5E) and the

occluded, inward-occluded, and inward-open states all having

similar binding modes to those seen in the solved OCT2-MPP+

8ET9 outward-occluded structure (Figures S5E–S5J). In the pre-

viously observed lower binding site, MPP+ is coordinated by a

nexus of mainly aromatic residues (F159, W217, F244, Y361,

andmore distantly Y240), and stabilized by a long-range electro-

static interaction with E386 (Figures 5C and 5D). These interac-

tions are in agreementwith the recently published experimentally

determined structures.46–48 The upper site, which is distinct

within our models, features fewer stabilizing interactions be-

tween OCT1 and MPP+ with the substrate-bound closer to the

open extracellular gate residues, specifically V40 and I365, as

well as lower aromatic residues that are close to the higher occu-

pancy binding site (F244 and Y361). As would be expected, the

substrate-binding residues (<5 angstroms from substrate in any

state) are enriched in functionally important residues and not

those important for abundance (Figures 5E and 5F). These resi-

dues were also implicated in substrate recognition and extracel-

lular gate closing by Zeng et al.46 Within our mutational scan,

substitutions within these aromatic residues are deleterious,

with mutations to non-aromatic residues particularly disruptive

(Figure S5K). As OCT1 transports cationic substrates, it is not

surprising that negatively charged residues coordinate the sub-

strate, with E386 having the strongest phenotypes. More

broadly, these negative residues are quite sensitive to mutations

with a particularly drastic effect for charge swaps (Figure S5L).

Given that the thermodynamic shift is induced by substrate pres-

ence, the alternative bindingmodewe observe could enforce the

closing of the extracellular gate when the substrate first binds,

starting the transition to the outward-occluded state.

Of the conformation-function important regions, we found

TM5, TM7, TM8, and TM10 directly interact with the substrate

to aid in transport, leaving TM2 and TM11 without a clear role.

In the inward-open facing state, TM2 and TM11 make contacts

near the extracellular face (Figure 5G). In contrast, further

down the TM2-TM11 interface, some interactions are main-

tained across states, which we interpret as forming a pivot, while

other contacts are state specific. D149 and R486 appear to sta-

bilize the inward state, and P479 forms a kink likely important in

enabling the geometries necessary for thesemotions, with all be-

ing sensitive to mutation. Further away from the extracellular
(G) Interface between TM helices 2 and 11 during conformational transitions involv

5D). Functional scores are mapped in blue.

(H) Comparison of structural context and functional screen heatmap for TM helice

right, TM 11 with corresponding region of screen with ordering reversed to matc

inward-open (cyan), outward-open (wheat), or both (magenta) states are indicate
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face, a series of glycines on TM2 (G158 and G162) and

TM11 (G474-475) likely provide the flexibility necessary for the

conformational changes. In addition, a key interaction F158-

D474 located immediately next to the flexible glycine hinges

could stabilize the outward state. Therefore, we find conforma-

tionally important interactions between TM11 and TM2 likely sta-

bilize the transition through the conformational cycle. Mutations

at all these residues at the TM2-TM11 interface are disruptive to

substrate uptake, implying a critical role in function likely by sta-

bilizing the inward-facing conformational state (Figure 5H). The

conformational ensembles complemented by multi-phenotypic

DMS data thus allow us to propose an integrated and compre-

hensive structure-function model for OCT1 and discover the

role of the TM2-TM11 interface in substrate uptake.

Inferring the biophysical mechanisms by which
mutations alter OCT1 function
Our understanding of OCT1 function led us toward a bio-

physically motivated model for how OCT1 variants alter function

in humans. We initially focused on a subset of 20 mutations that

span both loss-of-function and gain-of-function phenotypes.

These mutations are in regions crucial for function or abundance

and 12 (V135I, R175H, E284A, D303E, D303G, M368T, A370T,

S372G, A383S, E386K, I449T, and R486W) seen in humans in

the genome aggregation database (gnomAD). To ensure that

variants are indeed loss of function, we performed radioligand

uptake experiments in HEK293T cells for all 20 across a range

of substrates, including two canonical cationic OCT1 substrates

MPP+ and TEA+ and pharmaceuticals sumatriptan and metfor-

min (Figures 6A, 6B, and S6E–S6H). These assays recapitulate

the results of our screens. MPP+, which is chemically most like

SM73, has the highest correlation between radioligand uptake

experiments and the cytotoxicity screen. Two variants, R486E

and R488E, which were not loss of function in our screen, also

were not with MPP+, did show strongly decreased transport

with metformin and sumatriptan (Figures S6E–S6H), implying a

change to substrate specificity.

Some of the mechanisms underlying the effects of a mutation

can be directly intuited, such as charge repulsion the substrate-

binding E386K mutation or biogenesis disrupting variants

(W64R, V135I, R175H, and E284A). In other cases, where muta-

tions that alter substrate uptake are likely changing the confor-

mational ensemble, it is harder to interpret the effects. To

develop amechanistic understanding of how all mutations within

OCT1 alter substrate uptake, we predicted the conformational

landscape with and without the substrate MPP+ for all mutants

using the same MD pipeline as before (Figures 6B–6D, S6I,

and S6J). Using fitness scores, conformational ensembles, and

comparing the thermodynamic stability of inward- and out-

ward-facing states, we developed a biophysically grounded pre-

diction for how each mutation disrupts OCT1 (Figure 6E). From

the MD-derived free energy landscapes, we find examples in
ed in uptake: outward-open state (Apo A in 5D); right, inward open (MPP+ D in

s 2 and 11. Left, TM 2, with corresponding section of survivability screen, and

h TM 11 direction. Middle indicates contacts between residue Ca within 8 Å in

d. Heatmap is colored red to blue with increasing survivability scores.
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Figure 6. Biophysical means by which muta-

tions alter OCT1 function

(A) Radio-labeled MPP+ uptake experiments were

conducted for a selection of mutations. Left: mean

experimental uptake (n = 3; error bars: SEM). Right:

comparison between SM73 DMS cytotoxicity

scores and radio-labeledMPP+ uptake scores, with

SEM error bars (Spearman rho: �0.88)

(B–D) 1D projection of free energy landscapes of

Apo and liganded OCT1 WT, D149R, D303G, either

Apo (blue) or MPP-bound (red). x axis indicates the

path collective variable and y axis is free energy in

kJ/mol.

(E) Mechanistic basis for mutational impact on

OCT1. Mutations are plotted based on their MPP+

uptake scores (x axis). Dotted line indicates cutoffs

from screen on these mutants. Mechanistic classi-

fications inferred from their free energy landscapes

(STAR Methods) grouped in colored circles.
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whichmutations alter the conformational ensembles in amanner

that can lead to loss of function: for example, D149R and D149N

at the TM2-TM11 interfaces destabilize the substrate-dependent

exchange between outward and inward states by a ‘‘high kinetic

barrier’’ (Figures 6C and S6J). In addition, D149R is no longer

stabilized in the inward-facing state in the presence of bound

MPP+, and we conclude that loss of function ‘‘destabilizes the

inward-facing state.’’ Alternatively, gain-of-function mutations

can be examined, too. D303G changes the ensemble such that

the energetic barriers between outward and inward states are

dramatically reduced, which could increase the exchange be-

tween outward- and inward-facing states as in sugar trans-

porters.53 Combining mutational scanning and computational

ensemble predictions allows us to learn the biophysical mecha-

nisms behind how human polymorphisms alter substrate uptake.

An atlas of OCT1 variant effects within human
populations
To understand how OCT1 variation changes across people and

populations, we compared our mechanistic mutational scanning

data with a large-scale public database that provides a compre-
Molec
hensive and diverse collection of human ge-

netic variation, gnomAD. gnomAD v2.1.1

contains 160 synonymous, 392 missense,

3 in-frame deletions, and 2 in-frame inser-

tion variants for OCT1 (Table S1).22 Prior

to this work, only 24 of these variants had

been characterized, whereas now we can

use our DMS experiment to functionally

annotate nearly all observed variants (498

out of 515 unique protein-level variants

with both expression and survivability

scores, 7 with one or the other, and 11

with none) (Figures 7A and 7B). For the 23

out of 24 that had been previously studied

and are present in our DMS, we find a

strong concordance between published

MPP+ uptake experiments and our surviv-
ability (p < 0.0001, Pearson r = �0.9) and expression

(p < 0.0001, Pearson R = 0.91) screens (Table S1). After evaluating

375missense variants and 2 in-frame deletion human variants, we

found that 91 out of 368 (25%) of them had significant loss-of-

function phenotypes based on cytotoxicity, while 125 out of 377

(34%) had significant loss of protein expression (Figures 7B and

7C). Within the 86 human loss-of-function variants, expression is

the primary driver with only 10 out of 86 variants having disrupted

substrate uptake.

Because only 24 out of 392 known human variants had been

experimentally characterized, it was previously difficult to deter-

mine which populations have greater or lesser total allele fre-

quency of loss-of-function variants in OCT1. Now with our

systematic dataset, we explored whether reduced function var-

iants were evenly distributed across all populations. Surprisingly,

when comparing the six loss-of-function variants with mean

allele frequency (MAF) R1%, we found that they were exceed-

ingly rare (MAF <0.0005%) in East Asian populations, which

also had the lowest total allele frequency of common poor-func-

tioning variants at 0.1% compared with African (7.4%),

South Asian (14.8%), European (20%), non-Finnish European
ular Cell 84, 1932–1947, May 16, 2024 1941
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Figure 7. The impact of OCT1 polymor-

phisms in human populations

(A) Rank-ordered set of all 515 human poly-

morphisms from gnomAD (370 non-synonymous

and 135 synonymous), with previously characterized

variants indicated (39, orange). Cutoffs based on

synonymous mutation distributions as dotted lines.

(B) Expression and survivability scores plotted for

gnomAD variants, showing previously studied (or-

ange) vs. unstudied (blue) variants (orange).

(C) Classification of non-synonymous human vari-

ants by predicted impact. Diagram shows how

observed functional variation (right) is conditioned

on expression impacts (left). Numbers and per-

centages of variants are next to classes.

(D) Allele frequencies of non-synonymous variants

summed across populations by gnomAD ancestry.

y axis: sum of minor allele frequencies for all (top)

vs. loss-of-function (bottom) variants.

(E and F) Comparison of survivability (E) or VAMP-

seq (F) scores (x axis) with AlphaMissense patho-

genicity scores (y axis), with classification bound-

aries indicated with dotted lines. AlphaMissense

classifies variants into benign, pathogenic, or

ambiguous, corresponding to horizontal lines;

vertical lines as in 1F. Spearman correlation co-

efficients (rho) and significance are plotted.
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(27.4%), Ashkenazi (26.1%), and Latino (26.2%) populations, all

of which had much higher total allele frequencies. Furthermore,

when considering a total of 141 common and rare poor function

mutations across all populations, East Asians had the lowest

total allele frequency at 1.1%, followed by African (7.8%),

South Asian (16.1%), European (20.1%), non-Finnish European

(27.9%), Ashkenazi (26.5%), and Latino (26.5%) populations,

all of which had much higher total allele frequencies (Figure 7D).

A previous study observed the strongest divergence in the fre-

quency of losing OCT1 activity between populations in Europe

and East Asia but was limited in statistical power.54

Poor-functioning OCT1 variants broadly result in
increased cholesterol levels in humans
We next aimed to understand the contribution of OCT1 variation

to the diversity of human physiology. Poor-functioning OCT1

polymorphisms are associated with elevated low-density lipo-

protein (LDL) cholesterol, total cholesterol, and triglycerides.18

Based on this, we hypothesized that poor-functioning variants

identified in our screens should also show an increase in these

markers. To validate this, we used the UK Biobank (UKB), which

contains exome sequencing and associated patient health re-

cords. Within OCT1, the UKB database contains 268 missense
1942 Molecular Cell 84, 1932–1947, May 16, 2024
variants and 1 deletion variant, of which

264 are in our screens (Table S1). Of the

12 variants with a total MAF >0.1% in the

UKB population, six have poor OCT1

function either validated in our experi-

ments or from previous literature (R61C,

C88R, S189L, G401S, M420del, and

G465R). For all examined mutations, there
is a strong association with elevated LDL, cholesterol, and

triglycerides (Table S1). We used our DMS data to assign loss-

of-function parameters to all UKB missense variants and in-

frame deletion. In 180,000 individuals of European ancestry, var-

iants that confer poor function were significantly associated with

higher LDL (p = 2.8 3 10�10), total cholesterol (p = 1.1 3 10�9),

and triglyceride (p = 5.8 3 10�11) levels (Table S1). In contrast,

the 142 SNPs, which are similar to WT, exhibited weaker associ-

ations with LDL (p = 0.04), total cholesterol (p = 0.088), and tri-

glyceride (p=0.02) levels. We also confirmed that these variants

were not significantly associated with other non-OCT1 sub-

strates, such as uric acid (Table S1).

DISCUSSION

By measuring how all possible missense mutations alter OCT1

expression and substrate uptake, we discover that loss-of-func-

tion mutations are caused by disruptions in expression. Using

the expression screen, SLC22 subfamily conservation, and

OCT1 alphafold2 structure, we discover the stability helix and

ECD domain play a key role in biogenesis across SLC22 trans-

porters. This implies that the results of expression-based

screens would likely be similar across the SLC22 superfamily,
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including other drug transporters (OCT2-3 and OAT1-3) and rare

metabolic disease-associated transporters such as the carnitine

transporter OCTN2. Additionally, we found that the N-terminal 6

TMs of OCT1 primarily contribute to expression, with the C-ter-

minal 6 TMs contributing to transport. This agrees with prior

in vitro biophysical studies of membrane proteins showing they

co-translationally fold from N to C termini.55,56 Mutations, there-

fore, could disrupt the co-translational folding of TMs 1–6, which

may be the general rate-limiting step in MFS folding. By applying

these approaches in other MFS transporters, we could deter-

mine whether this is a general phenomenon. If so, this could

explain the evolutionary benefit of the fusion of two 6-TM do-

mains, which has enabled MFS to play key roles in cell physi-

ology across all kingdoms of life. This organization suggests a

‘‘division of labor’’ with the N-terminal TMs determining biogen-

esis, and C-terminal TMs modulating substrate uptake. Under-

standing MFS transporter biogenesis and function would have

immense utility, as there are over 100 human MFS transporters,

with many associated with disease or drug uptake, and in path-

ogenic bacteria MFS transporters are involved in antibiotic

resistance.57,58

Besides a handful of intensely studied model membrane pro-

teins, such as rhodopsin and CFTR,39,59 we lack mechanistic

models for how mutations disrupt membrane protein biogenesis

to cause disease or alter drug efficacy.60 Here, we show that

mechanistic genetic screening provides a tractable, broadly

applicable method to systematically identify which mutations

affect biogenesis. Further, we find biogenesis underlies most

functional defects, in line with previous results in a potassium

channel, Kir2.1 and a more limited mutational study of human

variants in OCTN2.33,38,61 This approach could confer insight

into membrane protein biogenesis and inform treatments by

suggesting whether specific variants might be rescued by chap-

erones, for example.

Mechanistic variant effect predictive models are in their in-

fancy. AlphaMissense, the current leading model, predicts a sin-

gle variant pathogenicity score across the human proteome. In

contrast, our screens reveal the multi-phenotypic effects of

each mutation. We compared our abundance and cytotoxicity

scores with AlphaMissense and found that they broadly

agree, with a better fit for cytotoxicity than abundance (0.63

vs. �0.46 Spearman correlations, respectively, Figures 7E and

7F). AlphaMissense scores have low positional variance

compared with our scores, implying lower sensitivity to muta-

tional physiochemistry (Figure S7A). The lack of mechanistic

foundation of these models limits their utility for understanding

protein function and limits clinical genetics. For example, when

interpreting the effects of mutations, we must acknowledge

that most carriers of human variants are heterozygotes, as

diploid organisms. Zygosity has been identified as a variant ef-

fect modulator for OCT1, which would be challenging to predict

with existing data.13,62,63 Also, dominant-negative mechanisms

that alter ion channel function would be impossible to predict

with existing models.64 Without a mechanistic basis, we struggle

to rationally develop targeted therapeutics or guide treatment.

Advances in structural biology allowed the membrane protein

field to better understand how transporters work.65,66 A powerful

resource to assist understanding is the development of
approaches that can predict entire conformational land-

scapes.50,67,68 When we initiated this manuscript, there were

no experimental structures within OCT1’s SLC22 superfamily.

Over the course of this study and manuscript preparation, 12

experimental models of OCTs were deposited, providing us

the opportunity to compare our independently predicted models

with experimental structure determination. One of the models

(PDB: 8ET9) was even solved with the same substrate, MPP+,

we used for modeling, and we find remarkable similarities for

the backbone, ligand, and side-chain orientations. This implies

that, at least within the MFS family, existing computational

modeling approaches are as accurate as experimental structure

determination while providing a more extensive view of the

conformational cycle. By complementing structural biology

with mechanistic mutational scanning, we can address the often

challenging ‘‘function’’ aspect in developing structure-function

models.

Pharmacogenomic research on OCT1 unveiled population-

specific variants, yet without systematic studies of variant effects

it is not feasible to study the distribution of functional variants

among populations.54,69 Though OCT1 genetic polymorphisms

are not yet routinely monitored in clinical pharmacogenetic ana-

lyses, there is a wealth of data suggesting that poor function var-

iants collectively associate with differences in drug levels and

response for drugs such as metformin,13 fenoterol,16 tramadol,17

morphine,62 and sumatriptan.15 In this study, we demonstrate

the feasibility of combining data from UKBiobank and DMS to

investigate the effects of OCT1 variants on LDL, cholesterol,

and triglycerides.

By integrating our DMS results with gnomAD to infer variant ef-

fects in populations and individuals, we find that loss of function

in human variants most commonly is due to biogenesis defects.

The distinct functionality of OCT1 across different populations

can have clinical implications. For instance, morphine has

been observed to exhibit stronger efficacy in East Asian

and African populations, requiring significantly lower doses

compared with Europeans.70,71 An unbiased understanding for

how variants impact drug transporters across populations could

enable better clinical decision-making, customized dosage, and

improved treatment.

Broadly applied approaches such as those in this study would

yield a biophysics-based understanding of evolution, a deep un-

derstanding of protein biology, human genetic variation, and the

diversity of life. The integration of mechanistic mutational scan-

ning, biophysical models of folding and structure, and large-

scale patient databases would allow a mechanistic prediction

for the impact of variation. This would transform our basic

biology for how proteins underlie our physiology, guide the diag-

nosis of disease, interindividual drug response, and develop-

ment of therapeutics to better treat disease.

Limitations of the study
We acknowledge the limitations of our approach. For DMS ex-

periments, we generated stable HEK293 cell lines with a variant

downstream of a doxycycline-inducible promoter. This overex-

pression approach does not perfectly match within expression

levels. Our VAMP-seq abundance readout indirectly measures

this through a fluorescent protein proxy, in contrast to the
Molecular Cell 84, 1932–1947, May 16, 2024 1943
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validation western blots. Finally, although we test variant effects

of a subset of mutations on several medications, we do not test

how all variants transport these medications, limiting our ability

to determine the effects of all human variants in patients. Studies

across multiple substrates will be required to determine how

polymorphisms within OCT1 cause substrate-specific effects.
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and Tzvetkov, M.V. (2019). Opioids as Substrates and Inhibitors of the

Genetically Highly Variable Organic Cation Transporter OCT1. J. Med.

Chem. 62, 9890–9905. https://doi.org/10.1021/acs.jmedchem.9b01301.

15. Matthaei, J., Kuron, D., Faltraco, F., Knoch, T., Dos Santos Pereira, J.N.,
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Data and code availability
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell cultures
The cell lines generated for this study were previously described.33,37 The HEK293T-based landing pad strains were a gift from Dr.

Kenneth Matreyek. To make the cell lines, 1500 ng of library landing pad constructs (described below) were co-transfected with

1500ng of a BxB1 expression construct (pCAG-NLS-BxB1) using 10.5mL of lipofectamine LTX in 10 wells of a 6 well plate. All cells

were cultured in 1X DMEM, 10% FBS, 1% sodium pyruvate, and 1% penicillin/streptomycin (D10). All cells were cultured at 37 �C at

5% CO2. The HEK293T-based cell line has a tetracycline induction cassette upstream of a BxB1 recombination site and split rapa-

mycin analog inducible dimerizable Casp-9. Two days following transfection, expression of integrated genes or iCasp-9 selection

system is induced by the addition of doxycycline (2 mg/mL, Sigma-Aldrich) to D10 media. Two days after induction with doxycycline,

AP1903 is added (10nM, MedChemExpress) to cause dimerization of Casp9. Successful recombination shifts iCasp-9 out of frame,

so only non-recombined cells will die from iCasp-9 induced apoptosis following the addition of AP1903. After two days of AP1903-

Casp9 selection themedia is changed back to D10with doxycycline and cells are allowed to recover for two days. After allowing cells

to recover for two days, media was changed to D10 with doxycycline and puromycin (2 mg/ml, Life Technologies Corporation), as an

additional selection step to remove non-recombined cells. Cells remained in D10 plus doxycycline and puromycin for at least two

days until cells stopped dying. Following puromycin treatment cells are detached, mixed, and seeded on two T75 flasks. Cells

were then allowed to grow until they reached near confluence, then frozen in aliquots in a cryoprotectant media (2XHyClone, HyCryo,

Cryopreservation Reagent). Landing pad cell lines were checked for mycoplasma using a detection kit.

METHOD DETAILS

Library generation
The OCT1 library generation was performed using the previously described method, DIMPLE (Deep Insertion, Deletion, and

Missense Mutation Libraries for Exploring Protein Variation in Evolution, Disease, and Biology).36 This method was adapted

from SPINE and was used to design oligo to create mutations, insertions, and deletions.88 The code was used to allow one

to mutate each amino acid position to the other 19 amino acids, mutate to a synonymous codon, and a deletion (see code

deposited at https://github.com/coywil26/DIMPLE). Primers and oligos that are designed and used for generating OCT1 li-

braries are listed in Table S2. Oligos for SLC22A1 was synthesized by Agilent (SurePrint Oligonucleotide, Agilent Technologies)

to give 10 pmol of lyophilized DNA, which was then resuspended in 1 X TE buffer. Vector containing SLC22A1 was synthesized

by Twist Bioscience in the High Copy Number Kanamycin backbone, the lyophilized plasmid DNA was resuspended to 10 ng/mL

in 1 x TE buffer.

Sublibraries of different regions of SLC22A1 were PCR amplified using primer-specific and polymerase (PrimeStar GXL DNA po-

lymerase) (Takara Bio). A total of 11 regionswere PCR amplified, each in 50 mL reactions using 1 mL of the total OLS library as template

and 30 cycles of PCR. 5 mL of the reactions was assessed by running on an agarose gel. The reactions were cleaned up using Zymo

Clean and Concentrate kits (Zymo Research) and eluted in 10 mL of TE buffer. For each 11 regions, the plasmid was amplified to add

on Golden Gate compatible type IIS restriction sites complementary to those encoded within the sublibrary oligos using Primestar

GXL polymerase according to the manufacturer’s instructions in 50 mL reactions using 1 mL of the template vector and 30 cycles of

PCR. The entire PCR reaction was run on a 1% agarose gel and gel purified using a Zymoclean Gel DNA Recovery Kit.

Target gene backbone PCR product and the corresponding oligo sublibrary were assembled using BsaI-mediated Golden Gate

cloning. Each 40 mL reaction was composed of 300 ng of backbone DNA, 50 ng of oligo sublibrary DNA, 2 mL BsaI-HF v2 Golden

Gate enzyme mixture (New England Biolabs), 4 mL 10x T4 Ligase buffer, and brought up to a total volume of 40 mL with nuclease

free water. These reactions were placed in a thermocycler with the following program: (i) 5 min at 37�C, (ii) 5min at 16�C, (iii) repeat
(i) and (ii) 29 times, (iv) 5minutes at 60�C, (v) hold at 10�C. Reactions were cleaned using ZymoClean and Concentrate kits, eluted into

10 mL nucleus free water, and transformed into MegaX DH10B electrocompetent cells (Thermo Fisher) according to manufacturer’s

instructions.

MegaXDH10B cells were recovered for one hour at 37�C. A small subset of the transformed cells were plated at varying cell density

to assess transformation efficiency. All transformations had at least 100x the number of transformed colonies compared to the library

size. The remaining cell outgrowth was added to 30 mL LB with 50 mg/mL kanamycin and grown at 37�C with shaking until the OD

reached 0.6 - 0.7. Library DNAwas isolated byminiprep (Zymo Research). Sublibrary concentration was assessed using Qubit. Each

sub-library of a given gene was pooled together at an equimolar ratio. These mixed libraries were assembled with a landing pad cell

line compatible backbone containing a Carbenicillin resistance cassette and GSGSGS-mNeonGreen Fragment P2A-Puromycin

cassette for positive selection.

Libraries were cloned into a landing pad vector containing a BxB1-compatible attB recombination site using BsmBI mediated

golden gate cloning. We kept track of transformation efficiency to maintain library diversity that was at least 100x the size of a given
Molecular Cell 84, 1932–1947.e1–e10, May 16, 2024

https://github.com/coywil26/DIMPLE


ll
Article
library. We designed the landing pad vector which we recombined the library into to contain BsmBI cutsites with compatible over-

hangs for the library to have an N terminal Kozak sequence and in-frame with a C-terminal GSGSGS-mNeonGreen Fragment P2A-

Puromycin cassette for positive selection. The golden gate protocol we used was 42�C for 5 minutes then 16�C for 5 minutes

repeated for 29 cycles followed by 60�C for 5 minutes before being stored at 4�C. This landing pad backbone was generated using

Q5 site-directed mutagenesis, according to the manufacturer’s suggestions.36 Reactions were cleaned using Zymo Clean and

Concentrate kits, eluted into 10 mL nucleus free water, and transformed into MegaX DH10B electrocompetent cells (Thermo Fisher)

according to manufacturer’s instructions. MegaX DH10B cells were recovered for one hour at 37�C. A small subset of the trans-

formed cells was plated at varying cell densities to assess transformation efficiency. All transformations had at least 100x the number

of transformed colonies compared to the library size. The remaining of the cells were plated into two large square plates (245mm x

245mm) containing 200 mL LB Amp.

Cell line generation and cell culture
The cell lines generated for this study were previously described.33,37 Tomake the cell lines, 1500 ng of library landing pad constructs

(described in previous section) were co-transfected with 1500ng of a BxB1 expression construct (pCAG-NLS-BxB1) using 10.5mL of

lipofectamine LTX in 10 wells of a 6 well plate. All cells were cultured in 1X DMEM, 10% FBS, 1% sodium pyruvate, and 1%penicillin/

streptomycin (D10). The HEK293T based cell line has a tetracycline induction cassette upstream of a BxB1 recombination site and

split rapamycin analog inducible dimerizable Casp-9. Two days following transfection, expression of integrated genes or iCasp-9

selection system is induced by the addition of doxycycline (2 mg/mL, Sigma-Aldrich) to D10 media. Two days after induction with

doxycycline, AP1903 is added (10nM, MedChemExpress) to cause dimerization of Casp9. Successful recombination shifts

iCasp-9 out of frame, so only non-recombined cells will die from iCasp-9 induced apoptosis following the addition of AP1903. After

two days of AP1903-Casp9 selection the media is changed back to D10 with doxycycline and cells are allowed to recover for two

days. After allowing cells to recover for two days, media was changed to D10 with doxycycline and puromycin (2 mg/ml, Life Tech-

nologies Corporation), as an additional selection step to remove non-recombined cells. Cells remained in D10 plus doxycycline and

puromycin for at least two days until cells stopped dying. Following puromycin treatment cells are detached, mixed, and seeded on

two T75 flasks. Cells were then allowed to grow until they reached near confluence, then frozen in aliquots in a cryoprotectant media

(2X HyClone, HyCryo, Cryopreservation Reagent).

Sequencing library preparation and genomic DNA extraction and data analysis
Genomic DNA was extracted using a Quick-DNA�Microprep Plus Kit (Zymo Research) from cells sorted into four different GFP in-

tensities. Genomic DNA was extracted using a Quick-DTNA� Miniprep Plus Kit (Zymo Research) from cells treated with or without

SM73 (1 mM) at different timepoints. The extracted genomic DNA from the miniprepped or micro kit prepped plasmid library were

amplified using Landing_pad_backbone_for and P2A_cell_line_rev primers (Table S2).

Amplicons were prepared for sequencing using the Nextera XT DNA Library kit from Illumina with 1 ng of DNA input. Samples were

indexed using the IDT for IlluminaNextera DNAUniqueDual Indexes Set D (96 Indexes) and SPRISelect beads (BeckmanCoulter) at a

0.9x ratio were used for cleanup and final size selection. Each indexed tagmented library was quantified with Qubit HS as well as

Agilent 4200 TapeStation. Samples were then pooled and sequenced on aNovaSeq 6000 SP300 flowcell in paired-endmode, gener-

ating fastq files for each sample after demultiplexing. Each fastq was then processed in parallel using the following workflow: adapter

sequences and contaminants were removed using BBDuk, then paired reads were error corrected with BBMerge and then mapped

to the reference sequence using BBMap with 15-mers (all from BBTools73). Variants in the mapped SAM file were called using the

AnalyzeSaturationMutagenesis tool in GATK v4.74 The output of this tool is a CSV containing the genotype of each distinct variant as

well as the total number of reads. This was then further processed using a python script, which filtered out sequences that were not

part of the designed variants, then formatted input files for Enrich2.75 Enrichment scores were calculated from the collected pro-

cessed files using weighted least squares and normalized using wild-type sequences. The final scores were then processed and

plotted using R. Read counts are reported within Table S1. Enrich2 scores for all replicates and overall are reported in Table S1.

Our libraries and cell lines show good coverage and low bias, as desired, with >97% of variants identified in our pre-screen sample

and even representation across positions (Figure S1).

Transient transfection of the complementary remainder of the green fluorescent protein (mNG2-1-10)
HEK293T cells with the OCT1 library of variants are transfected with a construct containing green fluorescent protein (mNG2-1-10).

This construct contains a CMV-mNG2-1-10-P2A-mCherry allowed selecting cells for sorting that have high expression of this tran-

siently transfected gene. 600,000 - 700,000 cells/well (6-well poly-d-lysine coated) were seeded two days before the transfection. A

total of 12 wells were plated including a well containing HEK293 cells without the landing pad integration site. The mNG2-1-10 con-

structs (3000 ng/well) were mixed with OptiMEMmedia (0.5 mL/well) (Life Technologies) and Lipofectamine LTX (10.5 mL/well). Sam-

ples were mixed by pipetting up and down several times, allowed to stand at room temperature for 15-20 min. The media with the

cells seeded the day before were removed and fresh media (2 mL, DMEM-H21, 10% FBS) were added to each well. After 15-20 min

incubation time of the mixture above, then add 0.5 mL of the mixture to each well of the 6-well plate. After 24 hours, cell media were

removed, and fresh media were added to each well. (DMEM-H21, 10% FBS). After additional 24 h, cells are ready for subsequent

experiments with fluorescent-activated cell sorting (FACS) to sort the cells into different GFP abundance.
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Fluorescence-activated cell sorting for expression screen
In VAMP-seq, we add a small fragment of a split-fluorescent protein, to the cytoplasmic C-terminus of OCT1 (OCT1-mNG2-11) then

cytoplasmically co-express the complementary remainder of the fluorescent protein (mNG2-1-10). Folded OCT1-mNG2-11 effi-

ciently assembles with mNG2-1-10 to generate fluorescence, allowing fluorescence to serve as a FACS-seq-compatible proxy for

OCT1 abundance. After conducting a 24-hour transient transfection of CMV-mNG2-1-10-P2A-mCherry (as described in the previous

section), all cells were sorted using a BD FACSAria II cell sorter. Our gating strategy involved selecting single cells, then only sorting

cells with highmCherry fluorescence thereby ensuring that the complementary of mNeonGreen fragment was not limiting (Figure S2).

mNeongreen fluorescence was excited with a 488 nm laser and recorded with a 530/30 nm band pass filter, and mCherry fluores-

cence with a 561 nm laser and 585/42 nm band pass filter. The remaining pool was sorted into four subpopulations based on their

mNeonGreen fluorescence levels. As the fluorescence distribution showed a skewed pattern, we designed gates for even bins by cell

count (Figure S2). Subsequently, each cell population underwent the extraction of genomic DNA and the preparation of a library for

sequencing, as described in the previous method section on sequencing DNA.

Site-directed mutagenesis to create OCT1 variants
Twenty-six missense variants were selected to validate the OCT1 function and abundance. Six of the variants (R61C, C88R, P117L,

G401S, M420Del, G465) in the landing pad vector backbone generated using site-directed mutagenesis. To create each mutation,

NEBaseChanger tool was used to design primers and Q5 Site-Directed Mutagenesis Kit was used to perform mutagenesis. For the

other twenty of the OCT1 variants, we used the site-directed mutagenesis service offered by GenScript (New Jersey, USA). These

twenty OCT1 variants are in a pcDNA3.1(+)-GFP (C-terminal) vector. For all the constructs, Sanger sequencing was used to confirm

sequence.

Transient transfection of plasmid containing OCT1 variants
Twenty-six missense variants were selected to validate the OCT1 function and abundance. Six of the variants (R61C, C88R, P117L,

G401S, M420Del, G465) and reference OCT1 were transfected into HEK293T cells containing the landing pad and were used to

create stable cell lines. The six OCT1 variants are in the landing pad vector backbone. Twenty of the variants and reference

OCT1 were transfected into HEK293 cells (UCSF Cell Culture Facility) to create transient expressing cell lines. The twenty OCT1 var-

iants are in the pcDNA3.1(+)-GFP (C-terminal). Transient transfection of constructs encodingOCT1 reference andOCT1 variants was

achieved by reverse transfection using Lipofectamine LTX transfection reagent (Thermo Fisher Scientific). 50,000 cells/well (96-well)

were used in the reverse transfection. Constructs (100 ng/well) were mixed with OptiMEMmedia (20 mL/well) (Life Technologies) and

Lipofectamine LTX (0.2 mL/well). Samples were mixed by pipetting up and down several times, allowed to stand at room temperature

for 15-20min, and then added to eachwell of the 96-well plate (20 mL) (poly-d-lysine coated). HEK293 cells were counted and seeded

into wells at a density of 45,000 cells/well (100 mL/well) (96-well). After 24 hours, cell media were removed, and fresh media were

added to each well. (DMEM-H21, 10% FBS.) After additional 24 h, cells are ready for subsequent experiments (uptake assays).

To investigate the effects of missense variants on OCT1 expression, stable HEK293 cells expressing the variants or reference

OCT1 were created. Specifically, eight missense variants (W64R, V135I, D149N, D149R, R175H, E284A, E386K, R486W) and a refer-

ence OCT1 sequence in the pcDNA3.1(+)-GFP (C-terminal) expression vector were transfected into HEK293 cells to generate stable

cell lines. We subsequently analyzed OCT1 expression in these cells using confocal imaging.

Fluorescence microscopy
For the immunostaining experiments, HEK293 stable cell lines were plated onto poly-D-lysine treated 12-well plates with sterile

coverslips at a density of 200,000 cells per well. Two days post-seeding, when cells reached 90-100% confluency, they were

stained. On the day of staining, the cell media was removed and cells were washed with cold Hank’s Balanced Salt Solution

(HBSS, Thermo Fisher Scientific Inc.). The plasma membrane was stained first with Wheat Germ Agglutinin (WGA) Alexa Fluor

647 conjugate (Invitrogen Life Sciences Corporation), diluted in HBSS at 1:500, for 15 minutes at room temperature (RT). After

staining, the solution was removed and cells were washed three times with HBSS. Cells were fixed with 3.7% formaldehyde in

HBSS for 20 minutes, and after aspiration, cells were washed again three times with HBSS. The nucleus was then stained with

Hoechst solution (Thermo Fisher Scientific Inc.), diluted at 1:2000 in HBSS, for 20 minutes at RT in darkness. After staining, the

solution was aspirated and cells were washed twice with HBSS. Coverslips were carefully mounted on Superfrost PlusMicroscope

Slides (Thermo Fisher Scientific Inc.) with a drop of SlowFade Gold Antifade mountant (Thermo Fisher Scientific Inc.). Slides were

left to dry overnight in darkness, and then imaged on an inverted Nikon Ti microscope equipped with a CSU-22 spinning disk

confocal. All images were captured with the following channel settings; DAPI at 300ms exposure time and 50% laser power,

FITC at 300ms exposure time and 25% laser power, and CY5 at 100ms exposure time and 5% laser power. The images were over-

lapped using Fiji software.84

Western blotting
HEK293 stable cells containing individual OCT1 variants were rinsed with PBS and lysed on ice with RIPA buffer (Thermo Scientific,

Cat#89900) supplementedwith a protease inhibitor cocktail (ThermoScientific, Cat#PI87786). The lysed samples were centrifuged at

12,000 x g for 10 minutes at 4�C, and the supernatant was collected. The protein concentration of each sample in the supernatant
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was determined with the Pierce BCA Protein Assay Kits (Thermo Scientific, Cat# 23225). Proteins were separated by electrophoresis

using Blot Bis-Tris Mini Protein Gels (Invitrogen, Cat#NW04125BOX) and then transferred onto a polyvinylidene difluoride (PVDF)

membrane (Millipore, Cat#IPFL00010). The transferred membrane was blocked with 5% skim milk (Bio-Rad, Cat#1706404) in

1 x TBST buffer (Thermo Scientific, Cat#28360) for 1 hour at RT. The membrane was then incubated with SLC22A1 antibody

(2C5) (Novus, Cat#NBP1-51684) at 1:1000 dilution, for overnight at 4�C, followed by incubation with the corresponding horseradish

peroxidase-labeled secondary antibody for 1 hour at RT. After detection of OCT1, the membrane was stripped in stripping buffer

(Thermo Scientific, Cat#46430) at RT for 10 minutes, blocked again, and reprobed with anti-GAPDH antibody at a 1:1000 dilution

(Millipore, Cat#MAB374) as a loading control. The proteins were detected using the Pierce ECL Western Blotting Substrate (Thermo

Scientific, Cat#PI32209), and Western blot images were captured by use of the Amersham ImageQuant� 800 Western blot imaging

systems.

Radio-ligand uptake assay
The in vitro uptake assays were performed using methods developed in our laboratory as previously described.38,89 After 48 hours of

transient transfection of OCT1 variants in 96 well plates (poly-d-lysine coated), culture mediumwas removed, and cells were washed

once with 250 mL HBSS. Four radiolabeled substrates of OCT1, [3H]-MPP+ (American Radiolabeled Chemicals, #ART 0150), [14C]-

TEA (Perkin Elmer, #NEC298050UC), [14C]-metformin (Moravek, #MC 2043) and [3H]-sumatriptan (American Radiolabeled Chemi-

cals, #ART 1619), were used in the assay. To eachwell, 80 mL of Hanks’ Balanced Salt solution (HBSS) (Gibco, #14025092) containing

trace amounts of radioligand was added to each well and then incubated at 37 �C for 15 min. After a 15 min incubation period, the

reaction mix was aspirated and the cells were washed 2x with ice-cold HBSS (250 mL). Next, 100 mL of MicroScint-20 (Perkin Elmer,

#6013621) were added to each well and the plate was shaken at room temperature for 60-90 min. Radioactivity in each well was

measured on a MicroBeta2 Microplate Counter for Radiometric Detection (PerkinElmer). To determine the function of each variant,

each variant was normalized to OCT1 reference and expressed as a percentage after background uptake measured in the GFP vec-

tor was subtracted from both, calculated as follows: (OCT1 variant minus GFP) *100/ (OCT1 reference minus GFP). Each variant was

assayed in triplicate on a 96 well plate and measured in three or more biological replicates.

SM73 Survivability Screen
Cytotoxicity of SM73, a platinum analog, in OCT1 cells was adapted from our previous study.90 To determine inhibition potencies of

SM73 to kill 50% of the cells (IC50), cells were seeded on a 96-well plate (poly-d-lysine coated) at density 4000 cells/well. After 16-24

hours, the cells were incubated with different concentrations of SM73, starting from 100 mM to 1.7 nM, for 72 hours. Doxycycline

(2 mg/mL) was incubated in the media with SM73 to induce the expression levels of OCT1. After 72 hours, media was removed

and 50 mL of media was added to each well. Then 50 mL of Promega CellTiter-Glo luminescent reagent was added to each well. After

10-15 min incubation, transfer 80 mL to a 96 well plate (white, opaque). The luminescent cell viability was read on the Promega plate

reader. The assay is based on quantification of the ATP present in each well, which relates to the number of viable cells in each well.

The luminescent signal from cells treated with DMSO alone was considered the maximal signal (i.e. 100% cell growth). The percent

cell growth of each OCT1 reference and mutants and at each concentration of SM73 were calculated. IC50 were determined using

GraphPad (Prism v9.0).

For the deep mutational scanning, the cells (cells transfected with OCT1 library) were seeded into two T75 flasks. One flask only

had doxycycline (2 mg/mL) and the other flask contained SM73 (1 mM) and doxycycline (2 mg/mL). After 48 hours, cells in both T75

flasks were split and transferred into new T75 flasks and treated with doxycycline (2 mg/mL) with or without SM73 1 mM. Approxi-

mately 6 million cells were seeded in the T75 flask, and the T75 flask treated with SM73 1 mM, was seeded with approximately 10

million cells as many will be killed after 48 hours. After another 48 hours, the above process was repeated. Every 48 hours, when

the cells were split, approximately 1.5-3.0 million cells were collected for genomic DNA extraction. After another 48 hours, the above

processwas repeated. The cells in T75 flask are exposed to doxycycline (2 mg/mL) and SM73 1 mMor doxycycline (2 mg/mL) only for a

total of 144 hours.

Synthesis of SM73, a platinum anticancer agent
Themethodology of Christen and Higgins was adopted for the synthesis of the 4-phenylpiperazinyl platinum analog SM73.91 The key

species [PtIICl3NH3]
‒was obtained as its potassium salt, K[Pt"Cl3NH3] (Figure S7B), complex 1) from cisplatin. Reaction of complex 1

with NaI followed by 1-phenylpiperazine afforded the mixed-halo Pt(II) complex 2, which in turn was converted to the dichloride by

formation of the aqua species with silver nitrate and themixture exposed to HCl resulting in complex 3 (SM73). The synthesis of SM73

was previously described in a patent by Giacomini and More.92 (SP-4-3)-Amminedichloro(cyclohexanamine)platinum(II) (Scheme 1,

complex 3, SM73). Synthesis of complex 1 was performed per the procedure described previously.91 To an aqueous solution of 1

(0.375 g, 1.05 mmol) was added 0.4 g (2.0 mmol) of Nal in 1 mL of H2O and stirred for 30 min at ambient temperature. Then,

0.55 mL of 1-phenylpiperazine (0.1 mL, 0.58 mmol) was added to the reaction mixture and stirred for an additional 4 hours at

room temperature. The precipitated yellow solid waswashedwithwater and ethanol. Additional washingwith acetone provided com-

pound 2 as a yellow solid, which was filtered and dried in vacuo (0.81 g, 52% yield).To a stirred suspension of 2 (0.50 g, 0.93 mmol) in

30 mL H2O was added 0.253 g (1.49 mmol, 1.6 equiv) of AgNO3 in the dark. The reaction was allowed to stir for 4 hours before being

decolorized by activated charcoal. The precipitated AgCl was filtered and about 10mL of concentrated HCl was added to the filtrate.
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The solution was left undisturbed at room temperature for 2 h and then at 4�C overnight. The product was collected by vacuum filtra-

tion, followed by repeated washings with water, ethanol and ether to obtain SM73 as a light-yellow solid (0.42 g, 54% yield). Anal.

calcd for C10H17N3Cl2Pt: C, 26.98; H, 3.85; N, 9.44. Found: C, 26.82; H, 3.47; N, 9.41.
1H NMR (DMF-d7): 7.16 (2H, t), 6.90–6.73

(3H, m), 4.12 (3H, b), 3.58–3.31 (2H, m), 3.19–3.03 (4H, m), 2.84–2.62 (2H, m).

OCT1 AlphaFold2 structure mapping
The AlphaFold2 predicted OCT1 structure was used for initial investigation.93 We created scores for specific functional and abun-

dance importance of each residue based on our DMS results. The abundance importance score at a given position was defined

as the sum of the absolute values of the GFP scores for variants at that position with GFP scores >= 0.68 (corresponding to loss

of function) and is reported in Table S1. The functional importance score for a given position was defined as the sum of the absolute

values of the cytotoxicity scores for variants at that position with GFP scores < 0.68 (corresponding to non-loss of function) and is

reported in Table S1. These scores were mapped onto the B-factors of the AlphaFold2 model using the Bio3D R package for

visualization.85

Bioinformatics and sequence analysis
Conservation of OCT1 positions was determined using ConSurf.43 Human and other specific sequences were obtained from Uni-

Prot.94 They were aligned with MAFFT using L-INS-i mode.76 The alignment was visualized in Jalview.77 For broader sequence anal-

ysis, first all sequences matching the SLC22 InterPro family (IPR004749) were downloaded.95 Similar sequences in the unaligned set

were removed by removing redundancy at 50%with Jalview, then the resultant set was aligned with MAFFT using L-INS-i mode. An

HMM profile was generated from the alignment using HMMER3,78 then visualized with Skylign.96 The BLOSUM90 values were ob-

tained from the NCBI blast ftp site.97

Molecular Dynamics simulations
TheMolecular Dynamics (MD) simulations of this work were done using GROMACS2022.79 The AlphaFold2model of human OCT1 in

an inward-facing open conformation was downloaded and prepared using the CHARMM-GUI membrane builder,80 where the li-

gands were parametrized using PDB coordinates and cGENFF.81 Partial charges were forced by QM cluster calculations in implicit

solvent using the PCMmodel and were calculated using the 6-31G basis set with Hartree-Fock level of theory. Moreover, CHARMM-

GUI was also used to prepare the mutated OCT1 simulations by automatically choosing reasonable rotamers, and for all OCT1 sim-

ulations to create disulfide bridges between three pairs of cysteine residues in the soluble extracellular domain. The systems

consisted of OCT1 embedded in a POPC and solvated in a 10mM KCl solution with an ion imbalance such that the net charge

was zero. The initial PBC box size was set to 90x90x100 Å,3 and the systems were equilibrated according to the standard

CHARMM-GUI protocol in the NVT ensemble. The production simulations were carried out using a 2 femtosecond timestep and a

Nose-Hoover thermostat with separately coupled protein with ligand, POPC and water. For the barostat, the C-rescale scheme

was used using a compressibility of 4.5e-5 and a tau of 5.0. The linear constraint solver (LINCS) algorithm was used to constrain

all hydrogen-involving bonds, and particle mesh Ewald (PME) was utilized to calculate the long-range electrostatics above 12Å.

For the LJ potential we used a neighbor-list cutoff with a switching function at 10Å and rvdw of 12Å in consistency with the PME

calculations.

The substrate MPP+ was docked using AutoDock with default parameters and a 10x10x10 Å2 box centered around the centre of

mass of the entire TM region.82 The top 100 poses were identical in most part thanks to the strong electrostatic forces.

Enhanced Sampling MD Simulations
In this work, we used both non-equilibrium steered MD with umbrella potentials as an additional restraint in collective variable

space, as well as the accelerated weight histogram method (AWH) to drive the conformational change. The expression for the

CVs stemmed from the coevolutionary analysis (see below - coevolution driven conformational exploration) and was implemented

in the GROMACS transformation pull coordinate module. For the calculation of free energy surfaces along two collective variables,

we used the accelerated weight histogram (AWH) method as natively implemented in GROMACS. For all simulations, we used an

adaptive target distribution with the value of 1 below the cut-off of 120 kJ/mol and 0 above the cut-off with a smooth switching

function between 100-140 kJ/mol. Additionally, we used the convolved bias potential to bias the reference coordinate and a har-

monic coupling restraint between the reference and physical coordinates with varying force constants between 5,000-40,000 kJ/

mol, Å.2

AWH consists of two stages – the initial stage where the bias update size is decreased with each covering with the growth factor

(set by default to 3.0), and after a criterionmeasuring the samples in theweight histogram and the actual number of collected samples

is met the Wang-Landau algorithm is applied to achieve convergence. We recognized that our starting states may not be represen-

tative of the deepest minima, and thus we altered the growth factor to 2.0, which prolonged the initial stage such that more leeway

would be given to account for time-dependent degrees of freedom to equilibrate. We could thus cover the conformational landscape

several more times (<20) until the simulations exited the initial phase.We have heuristically seen that these estimations aremore long-

term reliable and produce flatter distributions without walkers getting stuck.
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Coevolution Driven Conformational Exploration
The core idea behind the computational methodology is to combine evolutionary information with physical information through ma-

chine learning. To achieve this, we further refined the procedure described in Mitrovic et al..50 To infer coevolving contacts between

residue pairs, we chose the pre-constructedmultiple sequence alignment of the PFAM transporter family PF00083.We then trained a

Pottsmodel using the direct coupling analysis (DCA) approach of the pseudo-maximum likelihoodGREMLINmethod, as described in

Mitrovic et al.50. From the trained Potts model, we calculated the L2-norms of the pairwise coupling parameter matrices. After

average product correction (APC) and alignment to the target human OCT1 sequence, we could assign these coevolutionary

coupling scores to all matched residue-residue pairs in the human OCT1 protein.

We then aligned the top 500 coupling pairs with the contact map extracted from the retrieved AlphaFold2 model of human OCT1,

where we identified the positions presenting a high coevolution score but no inter-residue contact as so-called false positives (FPs).

We then clustered the FPs according to coupling strength and created five separate coordinates for exploration with the accelerated

weight histogram (AWH) enhanced sampling algorithm in GROMACS2022. After 5ns of sampling with 4 walkers sharing a bias, we

trained a linear kernel SVM to distinguish the most extreme end states from the starting state. We could extract the top 50 distances

and their coefficients and analogously generate a newCV set to be used in AWHagain by retraining the SVMmodel with the newdata.

To avoid retaining previously identified and explored degrees of freedom we restrained the already sampled degrees of freedom

through a 10-times higher regularization parameter. We repeated this process 5 times, each time increasing the sampling towards

an outward-open state. In total, we used 25ns per walker. These AWH simulations were run with a constant target distribution, and

unrestrictive bounds. Using the last collective variable set, we defined bounds such that both start and end states would be sampled

and set a cut-off of 120 kJ/mol. We did not decrease the histogram size until the histogram equilibrated (meaning each point must

have sampled within 80% of the target distribution at that point) and started two walkers from the start- and end states.

After achieving convergence of the free energy landscapes (Figure S8), defined as the free energy surface that changes less than

1 kJ/mol over 50 ns per point, we estimated the errors of the free energy surface by the procedure described in Mitrovic et al.50. In

essence, we counted the transition imbalance between neighboring points, which under equilibrium conditions and a well-estimated

PMF, should be 0. By measuring the deviation from 0, we could estimate the size of the pointwise error in the free energy estimation

(Figure S8). Additionally, for a reliable free energy estimate, all walkers need to have sufficient overlap in their sampling regions. Thus,

we measured the effective probability distributions after convergence and the overlap between walkers (Figure S8D)

Mutational study in simulations
While 200-250 nanoseconds of simulation per walker were necessary to equilibrate, explore and converge the free energy landscape

of the full conformational transition of the WT human OCT1, we instead focused our investigation of the mutants on the rocker switch

mechanism, without sampling the opening of extra- and intracellular gates. We did this to alleviate the computational cost of running

18 mutants under 2 conditions each for a total of 36 separate simulation conditions. Under these conditions, we could iterate only 3

sets of explorations as described above. To enable a comparison between simulations, we used the optimal collective variable as

derived for the WT system for the final AWH round converging the final free energy surfaces.

For each mutational condition, we visually inspected both the 3D structures from each basin to verify the functional assignment of

each free energy basin, as well as the 2D landscapes themselves and quantitatively labeled each mutant based on this analysis

on each.

Protein network and computational importance analysis
While the collective variables inferred above may capture the essential degrees of freedom for moving between states, it is neither

unique in its description, nor can it describe all of the 3N intricacies of the conformational change. Thus, after convergence, we pro-

longed the simulations (with a nearly static bias) until an additional 100 coverings of the conformational landscape weremade. Based

on this sampling, we obtained the frame-wise free energy estimate as a function of the collective variable:

wðtÞ = e
�UðxðtÞÞ

RT

XNframes

i

uði; t; xÞ

U is the pointwise free energy estimate, RT the thermodynamic constant at 298 K, and u(i,t,x) the binning procedure. Moreover, x(t)

represents the value of the reaction coordinate at time t. Given a new reaction coordinate x, we could calculate each frame’s pro-

jection according to X2:

EðxiÞ = � RTln

 PNframes

t = 0 uði; t; xÞwðtÞPNframes

t = 0 wðtÞ

!

With this simple reweighting scheme accounting for the thermodynamic weight of each frame, we could reweight the free energy

landscape onto any other degree of freedom. In this case, we systematically projected the free energy surface onto every minimum

residue distance pair throughout the simulation. From these estimates, we measured the coupling between residues as the height of

the highest free energy barrier along that coordinate, seeing as tightly coupled interactions should have two or more well-defined

states with high barriers in-between, and less coupled pairs should have more spread-out distributions.
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Additionally, we utilized the same reweighting procedure to back-map the 2D free energy landscape onto the determined SVM

hyperplane normal vector, which would optimally describe the conformational change in 1D. This was primarily conducted for visu-

alization purposes.

Importance score profile peak assignment
With a robust conformation-wide measure of coupling, we constructed a protein network in which edges between residues are esti-

mated as coupling strength mentioned above. We then analyzed the network and calculated betweenness centrality with the short-

est-path finder algorithm as implemented in python’s NetworkX package.83 In simple terms, the quantity calculated is the number of

shortest paths that pass through each node in the network. Given that the centrality values correlated well with the experimentally

determined mutational sensitivity (as determined by a confusion matrix), we anticipated that we could possibly provide a molecu-

lar-level rationalization of the effect of mutations, and we set out to identify which processes each of the peaks in the centrality

plot were involved in. We focused on six different observable quantities, in particular residues which were primarily involved in:

1. Substrate dependency, determined by analyzing the difference in centrality values between the apo and substrate bound sim-

ulations.

2. Extracellular communication, determined by measuring the percentage of shortest paths that connected the ECD and TM

domains.

3. The Rocker Switch mechanism, determined by mapping where the involved barriers localized on the free energy landscape. If

the highest residue-residue pair barrier fell in the barrier region, we associated this with the main conformational change.

4. Gating contacts, determined by mapping the contacts to either the extracellular or intracellular gate opening and occlusion

processes.

5. Inward-specific contacts, as residues involved in contacts only in the inward-facing states.

6. Outward-specific contacts, as residues involved in contacts only in the outward-facing states.
Computational analysis of the biophysical basis of the effect mutations
Using visual analysis of the free energy surfaces themselves and 3D structures of each basin, we categorized each mutational con-

dition into a functional phenotype that could be linked to the experimentally determined fitness (Figure 3). In detail, the categories we

identified were:

1. High kinetic barrier, which was determined by measuring whether the kinetic barrier between inward- and outward facing

states was more than 5 kJ/mol higher than in WT simulations.

2. Low kinetic barrier, whichwas determined bymeasuring whether the kinetic barrier between inward- and outward facing states

was more than 5 kJ/mol lower than in WT simulations.

3. Destabilizes inward state, which was identified in cases where the inward facing state is rarely accessed compared to the out-

ward facing state.

4. Disrupts substrate binding, which was identified in the case of E386K, where the substrate did not occupy the correct binding

mode, rather it was the only condition in which the substrate would spontaneously unbind from the protein.

5. Stabilizes inward state, which was identified in cases where the inward facing state was more stabilized than the outward-fac-

ing state.

6. Substrate dependence loss, which was determined by examining whether new basins appeared, disappeared, or changed in a

significant capacity between substrate bound and Apo simulations.

In some cases (I449T, S372G) no label could be assigned. The folding or trafficking-defect mutations were not probed computa-

tionally since a functional localization never could be obtained experimentally.

GnomAD Database
To determine the frequencies of coding variants in human populations, we utilized the comprehensive gnomAD browser v2.1.1. Spe-

cifically, we extracted the variants for the SLC22A1 gene (transcript: ENST00000366963.4, NM_003057.3). We considered a variant

to be functionally impaired if it had a score beyond two standard deviations of the synonymous variant distribution (Figure 1F). This

corresponds to a cytotoxicity score of >= 0.68 or a GFP score of <= -0.72.

UKBiobank total cholesterol, triglyceride and LDL levels
In this study, we utilize exome sequencing results available from �200,000 UK Biobank (UKB) participants72,98 to perform genetic

association analysis of coding missense and in-frame deletion variants in SLC22A1 with total cholesterol and LDL levels of European

ancestry and other ethnic populations. This research was conducted with approved access to UK Biobank data under application

number 14105 (PI: J.S. Witte) and in accordance with the UK Biobank Ethics and Governance Framework. UK Biobank data are

publicly available by request from https://www.ukbiobank.ac.uk. Individual exome sequencing data, LDL cholesterol and total

cholesterol were extracted from the 199,933 UKB participants. The LDL cholesterol and total cholesterol levels were normalized
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using the R package bestNormalize.87 The association analysis and rare variant analysis were performed using RStudio (2022.07.02).

R package SKAT (version 2.2.4) was used for rare variant analysis.86 In SKAT analyses, variants that have a cytotoxicity score of

0.6798075 or higher, or an abundance score of -0.7207321 or lower, are considered to have poor function.

We performed several association analyses to determine the significant association of OCT1 missense variant with total choles-

terol and LDL levels and adjusted with body mass index (BMI), age, gender and for population structure (principal component anal-

ysis). The association analyses include:

1. Linear regression model to determine significant association of each missense variant with LDL and total cholesterol levels in

European, South Asian and African populations (Table S1).

2. Combined the known poor functionOCT1missense variants with LDL and total cholesterol levels in European, South Asian and

African populations. There are 5 variants that have poor OCT1 function in our study or from previous literature: p.R61C,

p.C88R, p.G401S, p.M420del, p.G465R (Table S1).

3. Combined the common and less common poor function OCT1 missense variants that poor function and previously character-

ized: S29L, R61C, C88R, S189L, R206C, G220V, G401S, M420del, G465R (Table S1).

4. Performed SKAT analyses, including Burden test, which examines functional variants in SLC22A1 as causal factors with ef-

fects in the same direction (Table S1).
QUANTIFICATION AND STATISTICAL ANALYSIS

Details of statistical analyses are in text and figure legends corresponding to specific analysis. For DMS experiments, three bio-

logical replicates were performed and sequenced in a single run. Standard error reported by Enrich2 is available in Figure S3 and

Table S1.
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